An Adaptive Robust Control Strategy in a Cancer Tumor-Immune System under Uncertainties

IEEE/ACM Transactions on Computational Biology and Bioinformatics
Maryam SharifiNazanin Namazi Sarvestani


We propose an adaptive robust control for a second order nonlinear model of the interaction between cancer and immune cells of the body to control the growth of cancer and maintain the number of immune cells in an appropriate level. Most of the control approaches are based on minimizing the drug dosage based on an optimal control structure. However, in many cases, measuring the exact quantity of the model parameters is not possible. This is due to limitation in measuring devices, variational and undetermined characteristics of micro-environmental factors. It is of great importance to present a control strategy that can deal with these unknown factors in a nonlinear model.


Related Concepts

Immune System
Immune Effector Cell
Medical Devices
Cancer Cell Growth
Malignant Neoplasms
Exogenous Factors
Entire Immune System
Immune System Processes

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.

Related Papers

Computational and Mathematical Methods in Medicine
Kwang Su KimIl Hyo Jung
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
J D BaoX Z Wu
© 2020 Meta ULC. All rights reserved