An Adaptive Threshold in Mammalian Neocortical Evolution

BioRxiv : the Preprint Server for Biology
Eric LewitusWieland B Huttner


Expansion of the neocortex is a hallmark of human evolution. However, it remains an open question what adaptive mechanisms facilitated its expansion. Here we show, using gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We provide evidence that the evolution of a highly folded neocortex, as observed in humans, requires the traversal of a threshold of ∼109 neurons, and that species above and below the threshold exhibit a bimodal distribution of physiological and life-history traits, establishing two phenotypic groups. We identify, using discrete mathematical models, proliferative divisions of progenitors in the basal compartment of the developing neocortex as evolutionarily necessary and sufficient for generating a fourteen-fold increase in daily prenatal neuron production and thus traversal of the neuronal threshold. Finally, using RNA-seq data from fetal human neocortical germinal zones, we show a genomic correlate to the neuron threshold in the differential conservation of long intergenic non-coding RNA. (see arXiv:1304.5412)

Related Concepts

Cell Division
Cell Growth
Biological Evolution
Stem Cells

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.