Jun 22, 2013

An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control

Evolutionary Applications
Clare D MarsdenG C Lanzaro

Abstract

Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations for such trials. However, population genetic studies are necessary to verify isolation. Here, we used a panel of genetic markers to assess for evidence of genetic isolation of two oceanic island populations of the African malaria vector, Anopheles gambiae s.s. We found no evidence of isolation between the Bijagós archipelago and mainland Guinea-Bissau, despite separation by distances beyond the known dispersal capabilities of this taxon. Conversely, the Comoros Islands appear to be genetically isolated from the East African mainland, and thus represent a location worthy of further investigation for field trials. Based on assessments of gene flow within and between the Comoros islands, the island of Grande Comore was found to be genetically isolated from adjacent islands and also exhibited local population structure, indicating that it may b...Continue Reading

Mentioned in this Paper

Genetic Markers
Malaria
Malaria Vaccines
Anopheles gambiae
Metaplastic Cell Transformation
Culicidae
Genetic Marker Expression
Gene Flow
Malaria Pathway

Related Feeds

Antimalarial Agents

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.

Antimalarial Agents (ASM)

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.