An Anopheles transgenic sexing strain for vector control
Abstract
Genetic manipulation of mosquito species that serve as vectors for human malaria is a prerequisite to the implementation of gene transfer technologies for the control of vector-borne diseases. Here we report on the development of transgenic sexing lines for the mosquito Anopheles stephensi, the principal vector of human malaria in Asia. Male mosquitoes, expressing enhanced green fluorescent protein (EGFP) under the control of the beta2-tubulin promoter, are identified by their fluorescent gonads in as early as their 3(rd) instar larval stage, and can be efficiently separated from females using both manual methods and automated sorting machines. Importantly, beta2-EGFP males are not impaired in their mating ability and viable fluorescent spermatozoa are also detected in spermathecae of wild-type females mated with transgenic males. The transgenic mosquito lines described here combine most of the features desired and required for a safe application of transgenic methodologies to malaria-control programs.
References
Citations
Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae
Related Concepts
Related Feeds
Antimalarial Agents
Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.
Antimalarial Agents (ASM)
Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.