PMID: 449Oct 1, 1975

An electrophysiological analysis of chemoreception in the sea anemone Tealia felina

The Journal of Experimental Biology
I D Dawn


1. Electrophysiological techniques have been employed to examine the nature of the response observed in the ectodermal slow-conduction system (SSI) when dissolved food substances contact the column of Tealia felina. The response seems to consist entirely of sensory activity which may continue for periods of many minutes, provided that the stimulatory chemicals remain contacting the column. 2. The interval between each evoked pulse gradually increases as the sensory response progresses. This does not result from fatigue in the conduction system but involves a genuine process of sensory adaptation. This may occur over a period of several minutes, which is much longer than comparable adaptation in higher animals. 3. Physiological evidence suggests that the chemoreceptors involved are dispersed throughout the column ectoderm and are absent from the pedal disc, oral disc, tentacles and pharynx. 4. The basic role of the SSI in coordinating behavioural activity in sea anemones is reviewed. It is concluded that it functions primarily as a single, diffuse-conducting unit responsible for transmitting frequency-coded sensory information from ectodermal chemoreceptors to ectodermal (and perhaps endodermal) effectors.

Related Concepts

Nerve Impulses
Chemoreceptor Cells
Feeding Patterns
Sea Anemones

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

The Tendon Seed Network

Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Long COVID-19

“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.