An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform
Abstract
The proper identification of differentially methylated CpGs is central in most epigenetic studies. The Illumina HumanMethylation450 BeadChip is widely used to quantify DNA methylation; nevertheless, the design of an appropriate analysis pipeline faces severe challenges due to the convolution of biological and technical variability and the presence of a signal bias between Infinium I and II probe design types. Despite recent attempts to investigate how to analyze DNA methylation data with such an array design, it has not been possible to perform a comprehensive comparison between different bioinformatics pipelines due to the lack of appropriate data sets having both large sample size and sufficient number of technical replicates. Here we perform such a comparative analysis, targeting the problems of reducing the technical variability, eliminating the probe design bias and reducing the batch effect by exploiting two unpublished data sets, which included technical replicates and were profiled for DNA methylation either on peripheral blood, monocytes or muscle biopsies. We evaluated the performance of different analysis pipelines and demonstrated that: (1) it is critical to correct for the probe design type, since the amplitude of ...Continue Reading
References
SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips
Citations
Report on the 2nd Annual Infinium Humanmethylation450 Array Workshop: 15 April 2013 QMUL, London, UK
Related Concepts
Trending Feeds
COVID-19
Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.
Neural Activity: Imaging
Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.
The Tendon Seed Network
Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.
Myocardial Stunning
Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.
Chronic Fatigue Syndrome
Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.
Incretins
Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.
Chromatin Regulation and Circadian Clocks
The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.
Long COVID-19
“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.
Spatio-Temporal Regulation of DNA Repair
DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.