Apr 11, 2020

Estimation of cellularity in tumours treated with Neoadjuvant therapy: A comparison of Machine Learning algorithms

BioRxiv : the Preprint Server for Biology
M. A. Ortega-RuizV. Garcia Garduno


This paper describes a method for residual tumour cellularity (TC) estimation in Neoadjuvant treatment (NAT) of advanced breast cancer. This is determined manually by visual inspection by a radiologist, then an automated computation will contribute to reduce time workload and increase precision and accuracy. TC is estimated as the ratio of tumour area by total image area estimated after the NAT. The method proposed computes TC by using machine learning techniques trained with information on morphological parameters of segmented nuclei in order to classify regions of the image as tumour or normal. The data is provided by the 2019 SPIE Breast challenge, which was proposed to develop automated TC computation algorithms. Three algorithms were implemented: Support Vector Machines, Nearest K-means and Adaptive Boosting (AdaBoost) decision trees. Performance based on accuracy is compared and evaluated and the best result was obtained with Support Vector Machines. Results obtained by the methods implemented were submitted during ongoing challenge with a maximum of 0.76 of prediction probability of success.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Nucleic Acid Hybridization Procedure
Multilocus Sequence Typing
Objective (Goal)
Genus Sistrurus

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.