An optimized live bacterial delivery platform for the production and delivery of therapeutic nucleic acids and proteins

BioRxiv : the Preprint Server for Biology
D. S. O. MoraLyndsey Linke


There is an unmet need for delivery platforms that realize the full potential of next-generation therapeutic and vaccine technologies, especially those that require intracellular delivery of nucleic acids. The in vivo usefulness of the current state-of-the-art delivery systems is limited by numerous intrinsic weaknesses, including lack of targeting specificity, inefficient entry and endosomal escape into target cells, undesirable immune activation, off-target effects, a small therapeutic window, limited genetic encoding and cargo capacity, and manufacturing challenges. Here we present our characterization of a delivery platform based on the use of engineered live, tissue-targeting, non-pathogenic bacteria (Escherichia coli strain SVC1) for intracellular cargo delivery. The SVC1 bacteria are engineered to specifically bind to epithelial cells via a surface-expressed targeting ligand, to escape the endosome upon intracellularization, and to have minimal immunogenicity. Here we report findings on key features of this system. First, we demonstrated that bacterial delivery of a short hairpin RNA (shRNA) can target and silence a gene in an in vitro mammalian respiratory cell model. Next, we used an in vivo mouse model to demonstrate ...Continue Reading

Methods Mentioned

genetic modifications
nuclear translocation

Software Mentioned

Gene Globe

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2021 Meta ULC. All rights reserved