Oct 31, 2014

Pseudomonas aeruginosa enhances the efficacy of norfloxacin against Staphylococcus aureus biofilms

BioRxiv : the Preprint Server for Biology
Laurent A.F. FrantzMartien A.M. Groenen

Abstract

The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both have been associated with worse lung function. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including HQNO, siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa to shift S. aureus norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus.   We previously showed that P. aeruginosa supernatant dissipates S. aureus membrane potential, and furthermore, depletion of the S. aureus proton-motive force recapitulates the effect of P. aeruginosa supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus. From these results, we hypothesize that exposure to P. aeru...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
PIGS
Genome
Genes
Isolation Aspects
Science of Morphology
Hemoglobin J Anatolia
Genomic Stability
Home Environment
Persons

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.