Oct 30, 2018

Analysing protein post-translational modform regions by linear programming

BioRxiv : the Preprint Server for Biology
Deepesh AgarwalJeremy Gunawardena

Abstract

Post-translational modifications (PTMs) at multiple sites can collectively influence protein function but the scope of such PTM coding has been challenging to determine. The number of potential combinatorial patterns of PTMs on a single molecule increases exponentially with the number of modification sites and a population of molecules exhibits a distribution of such "modforms". Estimating these "modform distributions" is central to understanding how PTMs influence protein function. Although mass-spectrometry (MS) has made modforms more accessible, we have previously shown that current MS technology cannot recover the modform distribution of heavily modified proteins. However, MS data yield linear equations for modform amounts, which constrain the distribution within a high-dimensional, polyhedral "modform region". Here, we show that linear programming (LP) can efficiently determine a range within which each modform value must lie, thereby approximating the modform region. We use this method on simulated data for mitogen-activated protein kinase 1 with the 7 phosphorylations reported on UniProt, giving a modform region in a 128 dimensional space. The exact dimension of the region is determined by the number of linearly independ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Size
MAPK1 gene
2-Dimensional
Post-Translational Protein Processing
Ptms protein, rat
Protein Function
Digests
PTMS gene
Universal Protein Resource
Mass Spectrometry

About this Paper

Related Feeds

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Buruli Ulcer

Buruli ulcer is a progressive disease of subcutaneous tissues caused by mycobacterium ulcerans. Here is the latest research.

© 2020 Meta ULC. All rights reserved