Analysis of carbohydrate-active enzymes in Thermogemmatispora sp. strain T81 reveals carbohydrate degradation ability

Canadian Journal of Microbiology
Atilio TomaziniDavid B Levin


The phylum Chloroflexi is phylogenetically diverse and is a deeply branching lineage of bacteria that express a broad spectrum of physiological and metabolic capabilities. Members of the order Ktedonobacteriales, including the families Ktedonobacteriaceae, Thermosporotrichaceae, and Thermogemmatisporaceae, all have flexible aerobic metabolisms capable of utilizing a wide range of carbohydrates. A number of species within these families are considered cellulolytic and are capable of using cellulose as a sole carbon and energy source. In contrast, Ktedonobacter racemifer, the type strain of the order, does not appear to possess this cellulolytic phenotype. In this study, we confirmed the ability of Thermogemmatispora sp. strain T81 to hydrolyze cellulose, determined the whole-genome sequence of Thermogemmatispora sp. T81, and using comparative bioinformatics analyses, identified genes encoding putative carbohydrate-active enzymes (CAZymes) in the Thermogemmatispora sp. T81, Thermogemmatispora onikobensis, and Ktedonobacter racemifer genomes. Analyses of the Thermogemmatispora sp. T81 genome identified 64 CAZyme gene sequences belonging to 57 glycoside hydrolase families. The genome of Thermogemmatispora sp. T81 encodes 19 genes f...Continue Reading


Jun 1, 1968·Journal of Bacteriology·J G Holt, R A Lewin
Nov 5, 1997·Current Opinion in Structural Biology·B Henrissat, G Davies
Jan 11, 2001·Biochimica Et Biophysica Acta·A Planas
Feb 12, 2002·International Journal of Systematic and Evolutionary Microbiology·Satoshi HanadaKazunori Nakamura
Jul 4, 2002·Molecular & Cellular Proteomics : MCP·Aaron J MackeyWilliam R Pearson
Sep 5, 2002·Microbiology and Molecular Biology Reviews : MMBR·Lee R LyndIsak S Pretorius
Jun 6, 2006·Applied and Environmental Microbiology·Linda CavalettiStefano Donadio
Nov 23, 2007·Molecular Biology and Evolution·D Wade AbbottAlisdair B Boraston
Jan 29, 2008·Applied and Environmental Microbiology·Antje LabesPeter Schönheit
Apr 22, 2008·Environmental Microbiology·Matthew B StottPeter F Dunfield
Oct 8, 2008·Nucleic Acids Research·Brandi L CantarelBernard Henrissat
Jan 30, 2009·Environmental Microbiology·Cláudia MonteiroUte Römling
Jul 25, 2009·International Journal of Systematic and Evolutionary Microbiology·William M MoeFred A Rainey
Feb 16, 2010·International Journal of Systematic and Evolutionary Microbiology·Shuhei YabeAkira Yokota
Oct 12, 2010·The Biochemical Journal·Vincent LombardBernard Henrissat
Apr 2, 2011·The Journal of Biological Chemistry·Olga Mazur, Jochen Zimmer
Feb 14, 2012·International Journal of Systematic and Evolutionary Microbiology·O A PodosokorskayaI V Kublanov
Sep 21, 2012·BMC Evolutionary Biology·Henrik AspeborgBernard Henrissat
Oct 12, 2012·The Journal of Biological Chemistry·Leonid O SukharnikovIgor B Zhulin
Dec 25, 2012·Applied and Environmental Microbiology·Renaud Berlemont, Adam C Martiny
May 7, 2013·Applied and Environmental Microbiology·Laetitia PoidevinSenta Heiss-Blanquet
Jun 21, 2013·Frontiers in Microbiology·Sara Beier, Stefan Bertilsson
Nov 26, 2013·Nucleic Acids Research·Vincent LombardBernard Henrissat
Feb 28, 2014·International Journal of Systematic and Evolutionary Microbiology·Dimitry Y SorokinHolger Daims
Apr 18, 2014·Environmental Microbiology·Alisha G CampbellMircea Podar
Aug 19, 2014·Applied Microbiology and Biotechnology·In Jung KimKyoung Heon Kim
Nov 6, 2014·Acta Crystallographica. Section D, Biological Crystallography·Franz J St JohnJason C Hurlbert

❮ Previous
Next ❯

Related Concepts

Related Feeds

Cardiac Glycosides

Cardiac glycosides are a diverse family of naturally derived compounds that bind to and inhibit na+/k+-atpase. Discover the latest research on cardiac glycosides heres.