May 10, 1976

Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance

The Journal of Biological Chemistry
C T BurtM Bárány


31P nuclear magnetic resonance spectra recorded from intact muophosphate, and the sugar phosphates. Quantitation of these metabolites by 31P nuclear magnetic resonance was in good agreement with values obtained by chemical analyses. The spectra obtained from various muscles showed considerable variation in their phosphorus profile. Thus, differences could be detected between (a) normal and diseased muscle; (b) vertebrates and invertebrates; (c) different species of the same animal. The time course of change in phosphate metabolites in frog muscle showed that ATP level remains unchanged until phosphocreatine is nearly depleted. Comparative studies revealed that under anaerobic conditions the Northern frog maintains its ATP content for 7 hours, while other types of amphibian, bird, and mammalian muscles begin to show an appreciable decay in ATP after 2 hours. Several lines of evidence indicated that ATP forms a complex with magnesium in the muscle water: (a) the phosphate resonances of ATP in the muscle were shifted downfield as compared to those in the alkaline earth metal-free perchloric acid extract of the muscle; (b) the coupling constants of ATP measured in various live muscles closely corresponded to those for MgATP in a so...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Rana pipiens
In Vivo NMR Spectroscopy
Magnesium Measurement
Sugar Phosphates
Magnetic Resonance Imaging

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.