Analysis of Rapidly Emerging Variants in Structured Regions of the SARS-CoV-2 Genome

BioRxiv : the Preprint Server for Biology
Sean P. Ryder

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around that globe. They also provide a unique opportunity to observe virus evolution in real time. Here, I evaluate two cohorts of SARS-CoV-2 genomic sequences to identify rapidly emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, twenty variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5'UTR, including a set of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-stable molecular switch in the 3'UTR. Finally, five variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M stem loop, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants ...Continue Reading

Citations

Dec 5, 2020·Journal of Computational Biology : a Journal of Computational Molecular Cell Biology·Christopher BarrettChristian M Reidys

Datasets Mentioned

BETA
MN908947

Methods Mentioned

BETA
GISAID
deamination
X-ray
antisense oligonucleotides

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.