Feb 29, 1996

Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system

Nature
C S von BartheldM Bothwell

Abstract

Neurotrophic factors support the differentiation and survival of neurons and influence properties of synaptic transmission. The neurotrophic hypothesis postulates a retrograde action of trophic factors: their production and release by target cells and their uptake by innervating axons. Besides the retrograde route of trophic messengers, the survival of neurons and the development of synapses is thought to be also regulated by anterograde, afferent trophic signals. We now show that exogenous neurotrophins are transported in the anterograde direction, from cell bodies to the axon terminals, and that the intact neurotrophin is released after anterograde transport, taken up and utilized by second-order visual neurons in the developing chick brain. These results suggest that anterogradely transported neurotrophins may play a role in synaptic plasticity and may have effects at more than one synapse beyond the initial release site.

Mentioned in this Paper

Visual System
Insulin-Like Growth Factor I
Presynaptic Terminals
Axonal Transport
Optic Lobe, Human
Neurons
Messenger protein
Uptake
Synaptic Transmission
Neurotrophic factor

Related Feeds

Cell Signaling by Tyrosine Kinases

Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. RTKs have been shown not only to be key regulators of normal cellular processes but also to have a critical role in the development and progression of many types of cancer. Discover the latest research on cell signaling and RTK here.