Antimicrobial pharmacokinetics and preclinical in vitro models to support optimized treatment approaches for uncomplicated lower urinary tract infections
Abstract
Urinary tract infections (UTIs) are extremely common. Millions of people, particularly healthy women, are affected worldwide every year. One-in-two women will have a recurrence within 12-months of an initial UTI. Inadequate treatment risks worsening infection leading to acute pyelonephritis, bacteremia and sepsis. In an era of increasing antimicrobial resistance, it is critical to provide optimized antimicrobial treatment. Literature was searched using PubMed and Google Scholar (up to 06/2020), examining the etiology, diagnosis and oral antimicrobial therapy for uncomplicated UTIs, with emphasis on urinary antimicrobial pharmacokinetics (PK) and the application of dynamic in vitro models for the pharmacodynamic (PD) profiling of pathogen response. The majority of antimicrobial agents included in international guidelines were developed decades ago without well-described dose-response relationships. Microbiology laboratories still apply standard diagnostic methodology that has essentially remained unchanged for decades. Furthermore, it is uncertain how relevant standard in vitro susceptibility is for predicting antimicrobial efficacy in urine. In order to optimize UTI treatments, clinicians must exploit the urine-specific PK of a...Continue Reading
References
The assessment of antimicrobial activity in an in-vitro model of the treatment of bacterial cystitis
Related Concepts
Related Feeds
Antimicrobial Resistance (ASM)
Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.
Antimicrobial Resistance
Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.