Aug 17, 2015

Antithetic Integral Feedback: A new motif for robust perfect adaptation in noisy biomolecular networks

BioRxiv : the Preprint Server for Biology
Corentin BriatMustafa Khammash

Abstract

Homeostasis is a running theme in biology. Often achieved through feedback regulation strategies, homeostasis allows living cells to control their internal environment as a means for surviving changing and unfavourable environments. While many endogenous homeostatic motifs have been studied in living cells, some other motifs may remain under-explored or even undiscovered. At the same time, known regulatory motifs have been mostly analyzed at the deterministic level, and the effect of noise on their regulatory function has received low attention. Here we lay the foundation for a regulation theory at the molecular level that explicitly takes into account the noisy nature of biochemical reactions and provides novel tools for the analysis and design of robust homeostatic circuits. Using these ideas, we propose a new regulation motif, which we refer to as antithetic integral feedback, and demonstrate its effectiveness as a strategy for generically regulating a wide class of reaction networks. By combining tools from probability and control theory, we show that the proposed motif preserves the stability of the overall network, steers the population of any regulated species to a desired set point, and achieves robust perfect adaptatio...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Metabolic Process, Cellular
Strategy
Regulation of Biological Process
Environment
Adaptation
Biochemical Reaction
Gene Function
Protein Domain
Gene Regulatory Networks
Species

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.