Mar 24, 2016

Applications of Deep Learning in Biomedicine

Molecular Pharmaceutics
Polina MamoshinaAlex Zhavoronkov

Abstract

Increases in throughput and installed base of biomedical research equipment led to a massive accumulation of -omics data known to be highly variable, high-dimensional, and sourced from multiple often incompatible data platforms. While this data may be useful for biomarker identification and drug discovery, the bulk of it remains underutilized. Deep neural networks (DNNs) are efficient algorithms based on the use of compositional layers of neurons, with advantages well matched to the challenges -omics data presents. While achieving state-of-the-art results and even surpassing human accuracy in many challenging tasks, the adoption of deep learning in biomedicine has been comparatively slow. Here, we discuss key features of deep learning that may give this approach an edge over other machine learning methods. We then consider limitations and review a number of applications of deep learning in biomedical studies demonstrating proof of concept and practical utility.

  • References39
  • Citations45

References

Mentioned in this Paper

Biological Markers
2-Dimensional
Medical Research Activity
Neurons
Neural Network Simulation
Pharmacologic Substance
Learning
Biomedicine
Drug Prospecting
Biomedical Research

Related Feeds

Cell Adhesion Molecules in the Brain

Cell adhesion molecules found on cell surface help cells bind with other cells or the extracellular matrix to maintain structure and function. Here is the latest research on their role in the brain.