Approximation of continuous growth of Cephalotaxus harringtonia plant cell cultures using fed-batch operation

Biotechnology and Bioengineering
P J WestgateP F Heinstein


In Cephalotaxus harringtonia plant cell cultures, periods of batch growth that are limited by hexose uptake are too short to make an accurate estimate of the Monod saturation constant. Continuous cultures are infeasible on a laboratory scale, and semicontinuous cultures require too frequent sampling. Fed-batch operation, consisting of intermittent removal from a culture that is fed continuously, was investigated as a possible solution to these problems. For a constant feed rate, computer simulations showed that a steady state can be achieved which is useful for studying growth at different specific growth rates. In terms of the dilution rate it was confirmed that the operation is essentially equivalent to continuous culture when the samples represent a small fraction of the total culture volume. Experiments with glucose or fructose as the carbon source were carried out in shake flasks fed by a multichannel syringe pump. Results indicate that Monod kinetics based on medium glucose levels cannot adequately describe growth under these conditions. Monod's expression for specific growth rate using internal glucose concentration gives an improved correlation.


Oct 1, 1986·Plant Physiology·J KanabusN C Carpita
Oct 1, 1986·Biotechnology and Bioengineering·D DrapeauC R Wilke
Mar 5, 1990·Biotechnology and Bioengineering·P J Westgate, A H Emery

❮ Previous
Next ❯


Jul 1, 1995·World Journal of Microbiology & Biotechnology·J J ZhongT Yoshida
Feb 15, 2001·Biochemical Engineering Journal·D Weuster-BotzM Arnold

❮ Previous
Next ❯

Related Concepts

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Epigenetics Insights from Twin Studies

Find the latest research on epigenetics and twin studies here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.