DOI: 10.1101/485516Dec 3, 2018Paper

Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1-methyltransferase that is important for growth.

BioRxiv : the Preprint Server for Biology
Qianqian GuoIain R Searle

Abstract

Modified nucleosides in tRNAs are critical for protein translation. N1-methylguanosine-37 and N1-methylinosine-37 in tRNAs, both located at the 3′-adjacent to the anticodon, are formed by Trm5 and here we describe Arabidopsis thaliana AtTrm5 (At3g56120) as a Trm5 ortholog. We show that AtTrm5 complements the yeast trm5 mutant, and in vitro methylates tRNA guanosine-37 to produce N1-methylguanosine (m1G). We also show in vitro that AtTRM5 methylates tRNA inosine-37 to produce N1-methylinosine (m1I) and in Attrm5 mutant plants, we show a reduction of both N1-methylguanosine and N1-methylinosine. We also show that AtTRM5 is localized to the nucleus in plant cells. Attrm5 mutant plants have overall slower growth as observed by slower leaf initiation rate, delayed flowering and reduced primary root length. In Attrm5 mutants, mRNAs of flowering time genes are less abundant and correlated with delayed flowering. Finally, proteomics data show that photosynthetic protein abundance is affected in mutant plants. Our findings highlight the bifunctionality of AtTRM5 and the importance of the post-transcriptional tRNA modifications m1G and m1I at tRNA position 37 in general plant growth and development.

Related Concepts

Anticodon
Cell Nucleus
Genes
Inosine
Nucleosides
Rats, Mutant Strains
RNA, Messenger
Transfer RNA
Yeasts
1-methylinosine

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.