Archaeobotanical evidence for a massive loss of epiphyte species richness during industrialization in southern England.

Proceedings. Biological Sciences
Christopher J EllisBrian J Coppins


This paper describes a novel archaeological resource--preserved epiphytes on the timber structure of vernacular buildings--used, to our knowledge, for the first time to quantify a loss of biodiversity between pre-industrial and post-industrial landscapes. By matching the confirmed occurrence of epiphyte species for the pre-industrial period, with a statistical likelihood for their absence in the present-day landscape (post-1960), we robustly identified species that have been extirpated across three contrasting regions in southern England. First, the scale of biodiversity loss observed--up to 80 per cent of epiphytes--severely challenges biodiversity targets and environmental baselines that have been developed using reference points in the post-industrial period. Second, we examined sensitivity in the present-day distribution of extirpated species, explained by three environmental drivers: (i) pollution regime, (ii) extent of ancient woodland, and (iii) climatic setting. Results point to an interacting effect between the pollution regime (sulphur dioxide) and changed woodland structure, leading to distinctive regional signatures in biodiversity loss.


Jun 3, 1988·Science·J A Swets
Mar 10, 2000·Science·O E SalaD H Wall
May 17, 2006·Trends in Ecology & Evolution·Katherine J WillisBlanca L Figueroa-Rangel
Aug 17, 2006·Conservation Biology : the Journal of the Society for Conservation Biology·S Jha, K S Bawa
Sep 25, 2007·Minnesota Medicine·Linda Amaikwu-RushingMargaret Dexheimer Pharris
Dec 17, 2008·Conservation Biology : the Journal of the Society for Conservation Biology·Philip Lawn
Jun 9, 2009·Ecology Letters·Toby A GardnerNavjot S Sodhi
Oct 1, 1995·Trends in Ecology & Evolution·D Pauly

❮ Previous
Next ❯


Jun 6, 2003·Journal of Molecular and Cellular Cardiology·Joseph M Miano

❮ Previous
Next ❯

Related Concepts

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.


Blastomycosis fungal infections spread through inhaling Blastomyces dermatitidis spores. Discover the latest research on blastomycosis fungal infections here.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.


Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.