May 28, 2014

Artificially Inducing Close Apposition of Endoplasmic Reticulum and Mitochondria Induces Mitochondrial Fragmentation

BioRxiv : the Preprint Server for Biology
Victoria J Miller, David J Stephens

Abstract

Cycles of mitochondrial fission and fission are essential for normal cell physiology. Defects in the machinery controlling these processes lead to neurodegenerative disease. While we are beginning to understand the machinery that drives fission, our knowledge of the spatial and temporal control of this event is lacking. Here we use a rapamycin-inducible heterodimerization system comprising both ER and mitochondrial transmembrane components to bring the ER membrane into close physical proximity with mitochondria. We show that this artificial apposition of membranes is sufficient to cause rapid mitochondrial fragmentation. Resulting mitochondrial fragments are shown to be distinct entities using fluorescence recovery after photobleaching. We also show that these fragments retain a mitochondrial membrane potential. In contrast, inducible tethering of the peripheral ER exit site protein TFG does not cause mitochondrial fragmentation suggesting that very close apposition of the two membranes is required.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Tissue Membrane
Abnormal Fragmented Structure
Membrane
Mitochondrial Inheritance
Spatial Distribution
Nerve Degeneration
Mitochondrial Membranes
Integral to Membrane
Mitochondrial Fission
Mitochondria

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.