Jul 12, 2017

Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA

Acta Crystallographica. Section F, Structural Biology Communications
Pablo AlcónStefano Stella

Abstract

Bacteria and archaea use the CRISPR-Cas system as an adaptive response against infection by foreign nucleic acids. Owing to its remarkable flexibility, this mechanism has been harnessed and adopted as a powerful tool for genome editing. The CRISPR-Cas system includes two classes that are subdivided into six types and 19 subtypes according to conservation of the cas gene and loci organization. Recently, a new protein with endonuclease activity belonging to class 2 type V has been identified. This endonuclease, termed Cpf1, in complex with a single CRISPR RNA (crRNA) is able to recognize and cleave a target DNA preceded by a 5'-TTN-3' protospacer-adjacent motif (PAM) complementary to the RNA guide. To obtain structural insight into the inner workings of Cpf1, the crystallization of an active complex containing the full extent of the crRNA and a 31-nucleotide dsDNA target was attempted. The gene encoding Cpf1 from Francisella novicida was cloned, overexpressed and purified. The crRNA was transcribed and purified in vitro. Finally, the ternary FnCpf1-crRNA-DNA complex was assembled and purified by preparative electrophoresis before crystallization. Crystals belonging to space group C2221, with unit-cell parameters a = 85.2, b = 137...Continue Reading

  • References21
  • Citations2

References

  • References21
  • Citations2

Citations

Mentioned in this Paper

Crystal - Body Material
Shuttle Vectors
Bacterial Proteins
Classification
Alkalescens-Dispar Group
Genes
CRISPR-Cas Systems
Endonuclease
Endonuclease Activity
Transcription, Genetic

Related Feeds

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

Archaeogenetics

Recent advances in genomic sequencing has led to the discovery of new strains of Archaea and shed light on their evolutionary history. Discover the latest research on Archaeogenetics here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

Bacterial Protein Structures (ASM)

Bacterial protein structures can expedite the development of novel antibiotics. Here is the latest research on bacterial proteins and the resolution of their structures.

Bacterial Protein Structures

Bacterial protein structures can expedite the development of novel antibiotics. Here is the latest research on bacterial proteins and the resolution of their structures.