Apr 21, 2020

Affinity proteomic dissection of the human nuclear cap-binding-complex interactome

BioRxiv : the Preprint Server for Biology
Y. DouJohn LaCava


A 5', 7-methylguanosine cap is a quintessential feature of RNA polymerase II-transcribed RNAs, and a textbook aspect of co-transcriptional RNA processing. The cap is bound by the cap-binding complex (CBC), canonically consisting of nuclear cap-binding proteins 1 and 2 (NCBP1/2). The CBC has come under renewed investigative interest in recent years due to its participation in RNA-fate decisions via interactions with RNA productive factors as well as with adapters of the degradative RNA exosome - including the proteins SRRT (a.k.a. ARS2) and ZC3H18, and macromolecular assemblies such as the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. A novel cap-binding protein, NCBP3, was recently proposed to form an alternative, non-canonical CBC together with NCBP1, and to interact with the canonical CBC along with the protein SRRT. The theme of post-transcriptional RNA fate, and how it relates to co-transcriptional ribonucleoprotein assembly is abundant with complicated, ambiguous, and likely incomplete models. In an effort to clarify the compositions of NCBP1-, 2-, and 3-related macromolecular assemblies, including their intersections and differences, we have applied an affinity capture-based...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Drug Response
Pharmacologic Substance
Clinical Investigators
Tumor Cells, Malignant
Drug Interactions

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Zhaleh SafikhaniBenjamin Haibe-Kains
© 2020 Meta ULC. All rights reserved