Jun 19, 2015

Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice

Scientific Reports
Shuqiang ChenBo Li


Compelling evidence indicates that stress in utero, as manifested by low birth weight (LBW), increases the risk of metabolic syndrome in adulthood. Singletons conceived by assisted reproductive technology (ART) display a significant increase in LBW risk and ART offspring have a different metabolic profile starting at birth. Here, used mouse as a model, we found that ART resulted in reduced fetal weight and placental overgrowth at embryonic day 18.5 (E18.5). The ART placentae exhibited histomorphological alterations with defects in placental layer segregation and glycogen cells migration at E18.5. Further, ART treatments resulted in downregulation of a majority of placental nutrient transporters and reduction in placental efficiency. Moreover, the ART placentae were associated with increased methylation levels at imprinting control regions of H19, KvDMR1 and disrupted expression of a majority of imprinted genes important for placental development and function at E18.5. Our results from the mouse model show the first piece of evidence that ART treatment could affect fetal growth by disrupting placental development and function, suggests that perturbation of genomic imprinting resulted from embryo manipulation may contribute to th...Continue Reading

Mentioned in this Paper

Metabolic Process, Cellular
Fetal Structures
KCNQ1OT1 protein, human
Protein Methylation
Placenta Disorders
Entire Embryo

Related Feeds

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.