Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5.
Abstract
Dengue virus type 2, a member of the family Flaviviridae, encodes a single polyprotein precursor consisting of 3391 amino acids residues that is processed to at least 10 mature proteins by host and viral proteases. The NS3 protein contains a domain commonly found in cellular serine proteinases that in cooperation with NS2B is involved in polyprotein processing. In addition, NS3 and NS5 proteins contain conserved motifs found in several RNA helicases and RNA-dependent RNA polymerases, respectively. Both enzymatic activities have been suggested to be involved in viral RNA replication. In this report, we demonstrate that the NS3 and NS5 proteins interact in vivo in dengue virus type 2-infected monkey kidney (CV-1) cells and in HeLa cells coinfected with recombinant vaccinia viruses encoding these proteins as shown by coimmunoprecipitations and immunoblotting methods. We also show by immunofluorescence, metabolic labeling, and two-dimensional peptide mapping that NS5 is a nuclear phosphoprotein and that phosphorylation occurs on serine residues at multiple sites. Furthermore, NS5 exists in differentially phosphorylated states in the nuclear and the cytoplasmic fractions, and only the cytoplasmic form of NS5 is found to coimmunoprec...Continue Reading
References
Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution
Citations
Phosphorylation of Single Stranded RNA Virus Proteins and Potential for Novel Therapeutic Strategies
Related Concepts
Related Feeds
ASBMB Publications
The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.