Jan 1, 1975

ATP synthesis driven by a protonmotive force in Streptococcus lactis

The Journal of Membrane Biology
P C Maloney, T H Wilson


An electrochemical potential difference for hydrogen ions ( a protonmotive force) was artifically imposed across the membrane of the anaerobic bacterium Streptococcus lactis. When cells were exposed to the ionophore, valinomycin, the electrical gradient was established by a potassium diffusion potential. A chemical gradient of protons was established by manipulating the transmembrane pH gradient. When the protonmotive force attained a value of 215 mV or greater, net ATP synthesis was catalyzed by the membrane-bound Ca++, Mg++ -stimulated ATPase. This was true whether the protonmotive force was dominated by the membrane potential (negative inside) or the pH gradient (alkaline inside). Under these conditions, ATP synthesis could be blocked by the ATPase inhibitor, dicyclohexylcarbodiimide, or by ionophores which rendered the membrane specifically permeable to protons. These observations provide strong evidence in support of the chemiosmotic hypothesis, which states that the membrane-bound ATPase couples the inward movement of protons to the synthesis of ATP.

Mentioned in this Paper

Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone
Adenosine Triphosphatases
ATP Synthesis Pathway
Resting Potentials
Integral to Membrane
Lactococcus lactis subsp. lactis

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.

Related Papers

Proceedings of the National Academy of Sciences of the United States of America
P C MaloneyT H Wilson
Proceedings of the National Academy of Sciences of the United States of America
E R Kashket, T H Wilson
© 2020 Meta ULC. All rights reserved