PMID: 8625813Feb 1, 1996

Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila

R Baker, G Schubiger


The Notch (N) gene encodes a cell signaling protein that mediates neuronal and epidermal determination in Drosophila embryos. N also regulates several aspects of myogenic development; embryos lacking N function have too many muscle founder cells and fail to properly differentiate somatic muscle. To identify cell-autonomous requirements for Notch function during muscle development, we expressed a Notch minigene in the mesoderm, but not in the ectoderm, of amorphic N-embryos. In these embryos, muscle founder hypertrophy is rescued, indicating that Notch is autonomously required by mesoderm cells to regulate the proper number of muscle founders. However, somatic muscle differentiation is only partially normalized, suggesting that Notch is also required in the ectoderm for proper muscle development. Additionally, mesodermal expression of Notch partially rescues epidermal development in overlying neurogenic ectoderm. This is unexpected, since previous studies suggest that Notch is autonomously required by proneural ectoderm cells for epidermal development. Mesodermal expression of a truncated Notch protein lacking the extracellular domain does not rescue ventral epidermis, suggesting that the extra-cellular domain of Notch can non-a...Continue Reading

Related Concepts

Notch protein, Drosophila
Crosses, Genetic
Embryonic Structures, Nonmammalian
Shuttle Vectors
Cell Surface Proteins
Lateral Plate Mesoderm

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Pediculosis pubis

Pediculosis pubis is a disease caused by a parasitic insect known as Pthirus pubis, which infests human pubic hair, as well as other areas with hair including eye lashes. Here is the latest research.

Rh Isoimmunization

Rh isoimmunization is a potentially preventable condition that occasionally is associated with significant perinatal morbidity or mortality. Discover the latest research on Rh Isoimmunization here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells. It also follows CRISPR-Cas9 approaches to generating genetic mutants as a means of understanding the effect of genetics on phenotype.

Enzyme Evolution

This feed focuses on molecular models of enzyme evolution and new approaches (such as adaptive laboratory evolution) to metabolic engineering of microorganisms. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Pharmacology of Proteinopathies

This feed focuses on the pharmacology of proteinopathies - diseases in which proteins abnormally aggregate (i.e. Alzheimer’s, Parkinson’s, etc.). Discover the latest research in this field with this feed.

Alignment-free Sequence Analysis Tools

Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. Here is the latest research.