Mar 25, 2020

Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis thaliana.

BioRxiv : the Preprint Server for Biology
Aleksandra SkiryczM. Wagner


Proteogenic dipeptides are intermediates of proteolysis as well as an emerging class of small-molecule regulators with diverse and often dipeptide-specific functions. Herein, prompted by differential accumulation of dipeptides in a high-density Arabidopsis thaliana time-course stress experiment, we decided to pursue an identity of the proteolytic pathway responsible for the buildup of dipeptides under heat conditions. By querying dipeptide accumulation versus available transcript data, autophagy emerged as a top hit. To examine whether autophagy indeed contributes to the accumulation of dipeptides measured in response to heat stress, we characterized the loss-of-function mutants of crucial autophagy proteins to test whether interfering with autophagy would affect dipeptide accumulation in response to the heat treatment. This was indeed the case. This work implicates the involvement of autophagy in the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

In Vivo
Antineoplastic Agents
Annexin A5
Cytotoxicity Assay
Alexa Fluor
Malignant Neoplasm of Stomach
Enzymes, antithrombotic
Stomach Carcinoma

Related Feeds

Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous disease with approximately 20,000 cases per year in the United States. AML also accounts for 15-20% of all childhood acute leukemias, while it is responsible for more than half of the leukemic deaths in these patients. Here is the latest research on this disease.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Carcinoma, Hepatocellular

Hepatocellular Carcinoma is a malignant cancer in liver epithelial cells. Discover the latest research on Hepatocellular Carcinoma here.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

AML: Role of LSD1 by CRISPR (Keystone)

Find the latest rersearrch on the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML) here.

Related Papers

The Proceedings of the Nutrition Society
P FürstP Stehle
Clinica Chimica Acta; International Journal of Clinical Chemistry
R A JohnstoneA Lemonnier
© 2020 Meta ULC. All rights reserved