Apr 28, 2020

Remote control of CAR T cell therapies by thermal targeting

BioRxiv : the Preprint Server for Biology
I. C. MillerGabriel A Kwong


The limited ability to control anti-tumor activity within tumor sites contributes to poor CAR T cell responses against solid malignancies. Systemic delivery of biologic drugs such as cytokines can augment CAR T cell activity despite off-target toxicity in healthy tissues that narrow their therapeutic window. Here we develop a platform for remote control of CAR T therapies by thermal targeting. To enable CAR T cells to respond to heat, we construct synthetic thermal gene switches that trigger expression of transgenes in response to mild elevations in local temperature (40-42 {degrees}C) but not to orthogonal cellular stresses such as hypoxia. We show that short pulses of heat (15-30 min) lead to more than 60-fold increases in gene expression without affecting key T cell functions including proliferation, migration, and cytotoxicity. We demonstrate thermal control of broad classes of immunostimulatory agents including CARs, Bispecific T cell Engagers (BiTEs), and cytokine superagonists to enhance proliferation and cell targeting. In mouse models of adoptive transfer, photothermal targeting of intratumoral CAR T cells to control the production of an IL-15 superagonist significantly enhance anti-tumor activity and overall survival....Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Neural Stem Cells
Nucleus Y
Body Surface Area Formula for Dogs
Clinical Trials
Structure of Body of Caudate Nucleus
Dog family

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.