Sep 15, 2015

Bayesian Gaussian Process Latent Variable Models for pseudotime inference in single-cell RNA-seq data

BioRxiv : the Preprint Server for Biology
Kieran R Campbell, Christopher Yau

Abstract

Single-cell genomics has revolutionised modern biology while requiring the development of advanced computational and statistical methods. Advances have been made in uncovering gene expression heterogeneity, discovering new cell types and novel identification of genes and transcription factors involved in cellular processes. One such approach to the analysis is to construct pseudotime orderings of cells as they progress through a particular biological process, such as cell-cycle or differentiation. These methods assign a score - known as the pseudotime - to each cell as a surrogate measure of progression. However, all published methods to date are purely algorithmic and lack any way to give uncertainty to the pseudotime assigned to a cell. Here we present a method that combines Gaussian Process Latent Variable Models (GP-LVM) with a recently published electroGP prior to perform Bayesian inference on the pseudotimes. We go on to show that the posterior variability in these pseudotimes leads to nontrivial uncertainty in the pseudo-temporal ordering of the cells and that pseudotimes should not be thought of as point estimates.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

MLC1
Cellular Process
Genome
Genes
Transcription, Genetic
Pseudo brand of pseudoephedrine
Gene Expression
Cell Differentiation Process
Genomics
Cell Cycle

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.