DOI: 10.1101/452557Oct 25, 2018Paper

Bayesian inference of neuronal ensembles

BioRxiv : the Preprint Server for Biology
Giovanni DianaMartin P Meyer


In many areas of the brain, both spontaneous and stimulus-evoked activity can manifest as synchronous activation of neuronal ensembles. The characterization of ensemble structure and dynamics provides important insights into how brain computations are distributed across neural networks. The proliferation of experimental techniques for recording the activity of neuronal ensembles calls for a comprehensive statistical method to describe, analyze and characterize these high dimensional datasets. Here we introduce a generative model of synchronous activity to describe spontaneously active neural ensembles. Unlike existing methods, our analysis provides a simultaneous estimation of ensemble composition, dynamics and statistical features of these neural populations, including ensemble noise and activity rate. We also introduce ensemble 'coherence' as a measure of within-ensemble synchrony. We have used our method to characterize population activity throughout the tectum of larval zebrafish, allowing us to make statistical inference on the spatiotemporal organization of tectal ensembles, their composition and the logic of their interactions. We have also applied our method to functional imaging and neuropixels recordings from the mous...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

IEEE Transactions on Bio-medical Engineering
S F Stanten, L Stark
Proceedings of the National Academy of Sciences of the United States of America
Alireza SheikhattarBehtash Babadi
© 2021 Meta ULC. All rights reserved