Mar 24, 2020

BCKDK regulates the TCA cycle through PDC to ensure embryonic development in the absence of PDK family

BioRxiv : the Preprint Server for Biology
L. Heinemann-YerushalmiElazar Zelzer


Pyruvate dehydrogenase kinase family of enzymes (PDK1-4) are central negative regulators of the TCA cycle by phosphorylating the rate-limiting multi-enzyme pyruvate dehydrogenase complex (PDC). Here, we show that the PDK family is dispensable for murine embryonic development and that BCKDK serves as a compensatory mechanism for PDKs by inactivating PDC. To study the role of Pdk family in vivo, we knocked out all four genes one by one. Surprisingly, Pdk total KO mouse embryos developed and were born in the expected ratio. Postnatally, these mice died by day four due to hypoglycemia or ketoacidosis, as confirmed by deep metabolic profiling. Looking for the mechanism that enables development in the absence of Pdks, we found that PDC site 2 (S300) was phosphorylated in these embryos, suggesting that another kinase compensates for the PDK family. Bioinformatic analysis predicted brunch chain ketoacid dehydrogenase kinase (Bckdk), a key regulator in the catabolism of branched chain amino acids (BCAA), as a candidate. Knockout of both Bckdk and the entire Pdk family led to loss of PDC phosphorylation on S300 and early embryonic lethality which firmly establish the role of BCKDK in the regulation of PDC. Altogether, this work demonst...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Gene Function

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.