Biodiesel production with microalgae as feedstock: from strains to biodiesel
Abstract
Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.
References
Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change
Citations
Related Concepts
Related Feeds
Biofuels (ASM)
Biofuels are produced through contemporary processes from biomass rather than geological processes involved in fossil fuel formation. Examples include biodiesel, green diesel, biogas, etc. Discover the latest research on biofuels in this feed.
Bioinformatics in Biomedicine
Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest research on bioinformatics in biomedicine here.