Biologically Consistent Annotation of Metabolomics Data

Analytical Chemistry
Nicholas AldenKyongbum Lee

Abstract

Annotation of metabolites remains a major challenge in liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics. The current gold standard for metabolite identification is to match the detected feature with an authentic standard analyzed on the same equipment and using the same method as the experimental samples. However, there are substantial practical challenges in applying this approach to large data sets. One widely used annotation approach is to search spectral libraries in reference databases for matching metabolites; however, this approach is limited by the incomplete coverage of these libraries. An alternative computational approach is to match the detected features to candidate chemical structures based on their mass and predicted fragmentation pattern. Unfortunately, both of these approaches can match multiple identities with a single feature. Another issue is that annotations from different tools often disagree. This paper presents a novel LC-MS data annotation method, termed Biologically Consistent Annotation (BioCAn), that combines the results from database searches and in silico fragmentation analyses and places these results into a relevant biological context for the sample as captured by a m...Continue Reading

Citations

Jan 3, 2018·Electrophoresis·Biswapriya B Misra
Sep 24, 2019·Journal of Toxicology and Environmental Health. Part B, Critical Reviews·Mariana Zuccherato BocatoFernando Barbosa
Apr 5, 2019·Nature Communications·Xiaotao ShenZheng-Jiang Zhu
Jul 1, 2020·American Journal of Physiology. Gastrointestinal and Liver Physiology·Xi QianCheleste M Thorpe
Dec 2, 2020·Microbial Cell Factories·Fang YangArul Jayaraman
Jan 2, 2021·Computational and Structural Biotechnology Journal·Sandrien DesmetKris Morreel

Related Concepts

Metazoa
Liquid Chromatography
Cricetulus
Chinese Hamster Ovary Cell
Tandem Mass Spectrometry
Metabolomics
Biological Factors
Radiography, Dual-Energy Scanned Projection
Chinese Hamster Ovary Cell
Chemicals

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.