DOI: 10.1101/480780Dec 4, 2018Paper

Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes

BioRxiv : the Preprint Server for Biology
Michele LaureniAdriano Joss


The control of nitrite oxidizing bacteria (NOB) challenges the implementation of partial nitritation and anammox (PN/A) processes under mainstream conditions. The aim of the present study was to understand how operating conditions impact microbial competition and the control of NOB in hybrid PN/A systems, where biofilm and flocs coexist. A hybrid PN/A moving-bed biofilm reactor (MBBR; also referred to as integrated fixed film activated sludge or IFAS) was operated at 15 °C on aerobically pre treated municipal wastewater (23 mgNH4-N·L−1). Ammonium oxidizing bacteria (AOB) and NOB were enriched primarily in the flocs, and anammox bacteria (AMX) in the biofilm. After decreasing the dissolved oxygen concentration (DO) from 1.2 to 0.17 mgO2·L−1 with all other operating conditions unchanged - washout of NOB from the flocs was observed. The activity of the minor NOB fraction remaining in the biofilm was suppressed at low DO. As a result, low effluent NO3− concentrations (0.5 mgN·L−1) were consistently achieved at aerobic nitrogen removal rates (80 mgN·L−1·d−1) comparable to those of conventional treatment plants. A simple dynamic mathematical model, assuming perfect biomass segregation with AOB and NOB in the flocs and AMX in the biof...Continue Reading

Related Concepts

Alcohol dehydrogenase
Microbial Biofilms
NBL1 protein, human
Polysaccharide MGN3
Nitrite-oxidizing enzyme I

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.


Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.

Biofilm & Infectious Disease

Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.