DOI: 10.1101/495481Dec 13, 2018Paper

Biophysical and physiological causes of coral reef microbialization

BioRxiv : the Preprint Server for Biology
Cynthia B SilveiraForest L Rohwer

Abstract

Coral reefs are declining globally as their primary producer communities shift from stony coral to fleshy macroalgae dominance. Previously, we have shown that the rise of fleshy macroalgae produces dissolved organic carbon (DOC) that lead to microbialization and coral death. Here we test the hypothesis that the biophysical cause of bacterial biomass accumulation is a relative decrease in electron acceptors relative to electron donors due to O2 loss from macroalgae. We show that 37 % of photosynthetic O2 produced by reef fleshy macroalgae is lost in the form of gas through ebullition from algae surfaces. O2 loss increases DOC:O2 ratios, decoupling the photosynthetically fixed carbon from oxidative potential for respiration. This biogeochemical environment drives heterotrophic microbes to increase cell-specific DOC consumption and cell sizes, accumulating biomass. In contrast, corals do not lose oxygen and support the growth of smaller and fewer bacteria. In situ biomass and metagenomic analyses of 87 reefs across the Pacific and Caribbean show that on algae-dominated reefs bacteria accumulate organic carbon through a Warburg-like increase in aerobic glycolytic metabolism. Because of its biophysical basis, microbialization is pre...Continue Reading

Related Concepts

Algae
Carbon
Cessation of Life
Donor Person
Glycolysis
Oxidation
Oxygen
Plankton
Respiration
Seaweed

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.