May 10, 2001

Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase

Journal of Bacteriology
M Y KiriukhinFrancis C Neuhaus


In Staphylococcus aureus RN4220, lipoteichoic acid (LTA) is anchored in the membrane by a diglucosyldiacylglycerol moiety. The gene (ypfP) which encodes diglucosyldiacylglycerol synthase was recently cloned from Bacillus subtilis and expressed in Escherichia coli (P. Jorasch, F. P. Wolter, U. Zahringer, and E. Heinz, Mol. Microbiol. 29:419-430, 1998). To define the role of ypfP in this strain of S. aureus, a fragment of ypfP truncated from both ends was cloned into the thermosensitive replicon pVE6007 and used to inactivate ypfP. Chloramphenicol-resistant (ypfP::cat) clones did not synthesize the glycolipids monoglucosyldiacylglycerol and diglucosyldiacylglycerol. Thus, YpfP would appear to be the only diglucosyldiacylglycerol synthase in S. aureus providing glycolipid for LTA assembly. In LTA from the mutant, the glycolipid anchor is replaced by diacylglycerol. Although the doubling time of the mutant was identical to that of the wild type in Luria-Bertani (LB) medium, growth of the mutant in LB medium containing 1% glycine was not observed. This inhibition was antagonized by either L- or D-alanine. Moreover, viability of the mutant at 37 degrees C in 0.05 M phosphate (pH 7.2)-saline for 12 h was reduced to <0.1%. Addition of ...Continue Reading

Mentioned in this Paper

Bacterial Proteins
Alkalescens-Dispar Group
Thylacodes aureus
Phosphate Measurement
Glucose, (beta-D)-Isomer

Related Feeds

CRISPR & Staphylococcus

CRISPR-Cas system enables the editing of genes to create or correct mutations. Staphylococci are associated with life-threatening infections in hospitals, as well as the community. Here is the latest research on how CRISPR-Cas system can be used for treatment of Staphylococcal infections.