PMID: 41575Dec 6, 1979

Blue and red shifts of bacteriochlorophyll absorption band around 880 nm in Rhodospirillum rubrum

Biochimica Et Biophysica Acta
E L Barsky, V D Samuilov


The redox potential dependence of the light-induced absorption changes of bacteriochlorophyll in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum has been examined. The highest values of the absorption changes due to the bleaching of P-870 and the blue shift of P-800 in chromatophores and subchromatophore complexes are observed in the 360-410mV redox potential range. At potentials below 300 mV (pH 7.0), the 880 nm band of bacteriochlorophyll shifts to shorter wavelengths in subchromatophore complexes and to longer wavelengths in chromatophores. The data on redox titration show that the red and blue shifts of 880-nm bacteriochlorophyll band represent the action of a non-identified component (C340) which has an oxidation-reduction midpoint potential close to 340 mV (n=1) at pH 6.0--7.6. The Em of this component varies by 60 mV/pH unit between pH 7.6 and 9.2. The results suggest that the red shift is due to the transmembrane, and the blue shift to the local intramembrane electrical field. The generation of both the transmembrane and local electrical fields is apparently governed by redox transitions of the component C340.


Aug 1, 1971·Die Naturwissenschaften·S SchmidtH T Witt
Jan 15, 1968·Biochimica Et Biophysica Acta·W W Parson
Oct 10, 1966·Biochimica Et Biophysica Acta·W J Vredenberg, J Amesz

Related Concepts

Complex (molecular entity)
Bacterial Chromatophore
Integral to Membrane
Titration Method

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.