Brain predictors of fatigue in Rheumatoid Arthritis: a machine learning study

MedRxiv : the Preprint Server for Health Sciences
M. GoniGordon D Waiter


Background: Fatigue is a common and burdensome symptom in Rheumatoid Arthritis (RA), yet is poorly understood. Currently, clinicians rely solely on fatigue questionnaires, which are inherently subjective measures. For the effective development of future therapies and stratification, it is of vital importance to identify biomarkers of fatigue. In this study, we identify brain differences between RA patients who improved and did not improve their levels of fatigue, and we compared the performance of different classifiers to distinguish between these samples at baseline. Methods: Fifty-four fatigued RA patients underwent a magnetic resonance (MR) scan at baseline and 6 months later. At 6 months we identified those whose fatigue levels improved and those for whom it did not. More than 900 brain features across three data sets were assessed as potential predictors of fatigue improvement. These data sets included clinical, structural MRI (sMRI) and diffusion tensor imaging (DTI) data. A genetic algorithm was used for feature selection. Three classifiers were employed in the discrimination of improvers and non-improvers of fatigue: a Least Square Linear Discriminant (LSLD), a linear Support Vector Machine (SVM) and a SVM with Radial B...Continue Reading

Methods Mentioned

Cognitive Behavioural Therapy

Software Mentioned


Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.