Oct 25, 2018

Bright split red fluorescent proteins with enhanced complementation efficiency for the tagging of endogenous proteins and visualization of synapses

BioRxiv : the Preprint Server for Biology
Siyu FengBo Huang

Abstract

Self-associating split fluorescent proteins (FPs) have been widely used for labeling proteins, scaffolding protein assembly and detecting cell-cell contacts. Newly developed self-associating split FPs, however, have suffered from suboptimal fluorescence signal. Here, by investigating the complementation process, we have demonstrated two approaches to improve split FPs: assistance through SpyTag/SpyCatcher interaction and directed evolution. The latter has yielded two split sfCherry3 variants with substantially enhanced overall brightness, facilitating the tagging of endogenous proteins by gene editing. Based on sfCherry3, we have further developed a new red-colored trans-synaptic marker called Neuroligin-1 sfCherry3 Linker Across Synaptic Partners (NLG-1 CLASP) for multiplexed visualization of neuronal synapses in living animals, demonstrating its broad applications.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Directed Evolution
Biological Markers
Gene Editing
Ostomy Pouch, Urinary, for Use on Faceplate, Plastic, Each
Molecular Probe Techniques
Neurons
CLASRP gene
Red fluorescent protein
Scaffold protein
Neuroligin

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.