Feb 6, 2014

Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice

BioRxiv : the Preprint Server for Biology
Brittany N CazakoffStephen D Shea

Abstract

Olfactory representations are shaped by both brain state and respiration; however, the interaction and circuit substrates of these influences are poorly understood. Granule cells (GCs) in the main olfactory bulb (MOB) are presumed to sculpt activity that reaches the olfactory cortex via inhibition of mitral/tufted cells (MTs). GCs may potentially sparsen ensemble activity by facilitating lateral inhibition among MTs, and/or they may enforce temporally-precise activity locked to breathing. Yet, the selectivity and temporal structure of GC activity during wakefulness are unknown. We recorded GCs in the MOB of anesthetized and awake mice and reveal pronounced state-dependent features of odor coding and temporal patterning. Under anesthesia, GCs exhibit sparse activity and are strongly and synchronously coupled to the respiratory cycle. Upon waking, GCs desynchronize, broaden their odor responses, and typically fire without regard for the respiratory rhythm. Thus during wakefulness, GCs exhibit stronger odor responses with less temporal structure. Based on these observations, we propose that during wakefulness GCs likely predominantly shape MT odor responses through broadened lateral interactions rather than respiratory synchroniza...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

YARS2 gene
Olfactory Cortex
Malignant Neoplasm of Stomach
Structure of Olfactory Bulb
Temporal Region
Dendritic Tuft
Brain
Cell Respiration
Smell Perception
Anesthesia Procedures

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

American Thoracic Society: Allergy, Immunology & Inflammation

This feed has been developed in conjunction with the American Thoracic Society for the benefit of its Allergy, Immunology, and Inflammation Assembly. It highlights new and impactful papers on allergy, asthma, genetics, and the pathogenesis of lung diseases.