Apr 15, 2016

C4 photosynthesis and climate through the lens of optimality

BioRxiv : the Preprint Server for Biology
Haoran ZhouErol Akçay


CO2, temperature, water availability and light intensity were all potential selective pressures to propel the initial evolution and global expansion of C4 photosynthesis over the last 30 million years. To tease apart how the primary selective pressures varied along this evolutionary trajectory, we coupled photosynthesis and hydraulics models while optimizing photosynthesis over stomatal resistance and leaf/fine-root allocation. We further examined the importance of resource (e.g. nitrogen) reallocation from the dark to the light reactions during and after the initial formation of C4 syndrome. We show here that the primary selective pressures − all acting upon photorespiration in C3 progenitors − changed through the course of C4 evolution. The higher stomatal resistance and leaf-to-root allocation ratio enabled by the C4 carbon-concentrating mechanism led to a C4 advantage without any change in hydraulic properties, but selection on nitrogen reallocation varied. Water limitation was the primary driver for the initial evolution of C4 25-32 million years ago, and could positively select for C4 evolution with atmospheric CO2 as high as 600 ppm. Under these high CO2 conditions, nitrogen reallocation was necessary. Low CO2 and light ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

C4 Photosynthesis
Cell Growth
Resistance Process
Carbon Dioxide
Complement component C4

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.