DOI: 10.1101/460220Nov 2, 2018Paper

Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures

BioRxiv : the Preprint Server for Biology
James K TrevathanKip A. Ludwig


After decades of study in humans and animal models, there remains a lack of consensus regarding how the action of electrical stimulation on neuronal and non-neuronal elements - e.g. neuropil, cell bodies, glial cells, etc. - leads to the therapeutic effects of neuromodulation therapies. To further our understanding of neuromodulation therapies, there is a critical need for novel methodological approaches using state-of-the-art neuroscience tools to study neuromodulation therapy in preclinical models of disease. In this manuscript we outline one such approach combining chronic behaving single-photon microendoscope recordings in a pathological mouse model with electrical stimulation of a common deep brain stimulation (DBS) target. We describe in detail the steps necessary to realize this approach, as well as discuss key considerations for extending this experimental paradigm to other DBS targets for different therapeutic indications. Additionally, we make recommendations from our experience on implementing and validating the required combination of procedures that includes: the induction of a pathological model (6-OHDA model of Parkinson's disease) through an injection procedure, the injection of the viral vector to induce GCaMP ...Continue Reading

Related Concepts

Related Feeds

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.