Apr 28, 2020

Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo

BioRxiv : the Preprint Server for Biology
S. GrimbertAlisa Piekny


Complex structures derived from multiple tissue types are challenging to study in vivo, and our knowledge of how cells from different tissues are coordinated is limited. Model organisms have proven invaluable for improving our understanding of how chemical and mechanical cues between cells from two different tissues can govern specific morphogenetic events. Here we used Caenorhabditis elegans as a model system to show how cells from three different tissues are coordinated to give rise to the anterior lumen. This poorly understood process has remained a black box for embryonic morphogenesis. Using various microscopy and software approaches, we describe the movements and patterns of epidermal cells, neuroblasts and pharyngeal cells that contribute to lumen formation. The anterior-most pharyngeal cells (arcade cells) may provide the first marker for the location of the future lumen and facilitate the patterning of the surrounding neuroblasts. These neuroblast patterns control the rate of migration of the anterior epidermal cells, whereas the epidermal cells ultimately reinforce and control the position of the future lumen, as they must join with the pharyngeal cells for their epithelialization. Our studies are the first to charact...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Biochemical Pathway
Diseases Database
Repository Operation
Gene Regulatory Networks
Carcinoma, Large Cell
Signal Transduction

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.