Apr 18, 2020

Neuronal Subcompartment Classification and Merge Error Correction

BioRxiv : the Preprint Server for Biology
Peter H. LiPeter H. Li


Recent advances in 3d electron microscopy are yielding ever larger reconstructions of brain tissue, encompassing thousands of individual neurons interconnected by millions of synapses. Interpreting reconstructions at this scale demands advances in the automated analysis of neuronal morphologies, for example by identifying morphological and functional subcompartments within neurons. We present a method that for the first time uses full 3d input (voxels) to automatically classify reconstructed neuron fragments as axon, dendrite, or somal subcompartments. Based on 3d convolutional neural networks, this method achieves a mean f1-score of 0.972, exceeding the previous state-of-the-art of 0.955. The resulting predictions can support multiple analysis and proofreading applications. In particular, we leverage finely localized subcompartment predictions for automated detection and correction of merge errors in the volume reconstruction, successfully detecting 90.6% of inter-class merge errors with a false positive rate of only 2.7%.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Genetic Drift
Biological Markers
Dysequilibrium Syndrome
Cell Growth
Suture Joint
Clinitrachus argentatus

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.