Jul 9, 2008

Cancer as a microevolutionary process affecting telomere structure and dynamics: the contribution of telomeres to cancer

Ai zheng = Aizheng = Chinese journal of cancer
J Arturo Londono-Vallejo

Abstract

Telomeres play fundamental roles in genome stability, nuclear architecture and chromosome pairing during meiosis. They shorten at every cell division and may be re-elongated or not depending on the presence of the dedicated enzyme, telomerase. Since in most human somatic cells telomerase is not expressed, shortening of telomeres during development and aging is the rule. Short telomeres being, under physiological conditions, incompatible with extended cell proliferation, telomere length defines the proliferation potential of a cell and operates as a mechanism to prevent uncontrolled cell growth. Conversely, in cells in which proliferation checkpoints have been abolished, shortening of telomeres causes chromosomes to fuse and to initiate cycles of breakage-fusion-bridge thus becoming a strong driving force for genome instability. In vitro, transformed cells with highly unstable genomes because of severe telomere shortening accumulate deleterious genetic changes and die (crisis). At the same time, random genetic or epigenetic changes may allow cells to acquire a telomere maintenance mechanism (as well as other tumor phenotypes) and to become immortal. Although telomere shortening and other types of telomere dysfunction probably co...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome
Telomere Shortening
Cell Division
Genomic Stability
Neoplasms
Chromosome Pairing
Senility
Cell Proliferation
Study of Epigenetics
Cell Growth

About this Paper

Related Feeds

Cancer Epigenetics & Metabolism (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on the relationship between cell metabolism, epigenetics and tumor differentiation.

Cancer Epigenetics and Senescence (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may be involved in regulating senescence in cancer cells. This feed captures the latest research on cancer epigenetics and senescence.