Apr 13, 2020

An analytical framework for interpretable and generalizable 'quasilinear' single-cell data analysis

BioRxiv : the Preprint Server for Biology
Jian Zhou, O. Troyanskaya


Scaling single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. To address this challenge, here we developed a novel 'quasilinear' framework that combines the interpretability and transferability of linear methods with the representational power of nonlinear methods. Within this framework, we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory, and surface estimation and allows their confidence set inference. We applied both methods to diverse single-cell RNA-seq datasets from whole embryos and tissues. Unlike PCA and t-SNE, GraphDR and StructDR generated representations that both distinguished highly specific cell types and were comparable across datasets. In addition, GraphDR is at least an order of magnitude faster than commonly used nonlinear methods. Our visualizations of scRNA-seq data from developing zebrafish and Xenopus embryos revealed extruding branches of lineages from a continuum of cell states, suggesting that the current branch view of cell specification may be oversim...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Somatic Mutation
Malignant Neoplasms
Evolution, Neutral
Clone Cells

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.