Cancer-specific associations of driver genes with immunotherapy outcome

BioRxiv : the Preprint Server for Biology
T. JunKuan-lin Huang

Abstract

Genomic features such as microsatellite instability (MSI) and tumor mutation burden (TMB) are predictive of immune checkpoint inhibitor (ICI) response. However, they do not account for the functional effects of specific driver gene mutations, which may alter the immune microenvironment and influence immunotherapy outcomes. By analyzing a multi-cancer cohort of 1,525 ICI-treated patients, we identified 12 driver genes in 6 cancer types associated with treatment outcomes, including genes involved in oncogenic signaling pathways (NOTCH, WNT, FGFR) and chromatin remodeling. Mutations of PIK3CA, PBRM1, SMARCA4, and KMT2D were associated with worse outcomes across multiple cancer types. In comparison, genes showing cancer-specific associations -- such as KEAP1, BRAF, and RNF43 -- harbored distinct variant types and variants, some of which were individually associated with outcomes. In colorectal cancer, a common RNF43 indel was a putative neoantigen associated with higher immune infiltration and favorable ICI outcomes. Finally, we showed that selected mutations were associated with PD-L1 status and could further stratify patient outcomes beyond MSI or TMB, highlighting their potential as biomarkers for immunotherapy.

Related Concepts

Escherichia coli
Bounded by
Research Study
Metabolite
Liquid Chromatography Mass Spectrometry
Analysis
Metabolomics
Gene Annotation
Orthogonal Array
TNS3

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.