Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature

BioRxiv : the Preprint Server for Biology
Artem KaznatcheevDavid Basanta

Abstract

Background: Tumours are diverse ecosystems with persistent heterogeneity in various cancer hallmarks like self-sufficiency of growth factor production for angiogenesis and reprogramming of energy-metabolism for aerobic glycolysis. This heterogeneity has consequences for diagnosis, treatment, and disease progression. Methods: We introduce the double goods game to study the dynamics of these traits using evolutionary game theory. We model glycolytic acid production as a public good for all tumour cells and oxygen from vascularization via VEGF production as a club good benefiting non-glycolytic tumour cells. This results in three viable phenotypic strategies: glycolytic, angiogenic, and aerobic non-angiogenic. Results: We classify the dynamics into three qualitatively distinct regimes: (1) fully glycolytic, (2) fully angiogenic, or (3) polyclonal in all three cell types. The third regime allows for dynamic heterogeneity even with linear goods, something that was not possible in prior public good models that considered glycolysis or growth-factor production in isolation. Conclusion: The cyclic dynamics of the polyclonal regime stress the importance of timing for anti-glycolysis treatments like lonidamine. The existence of qualitati...Continue Reading

Related Concepts

Acids
Energy Metabolism
Glycolysis
Growth Factor
Neoplasms
Pathologic Neovascularization
Oxygen
Lonidamine
Isolation Aspects
Disease Progression

Related Feeds

Cancer Metabolism: Therapeutic Targets

Targeting the mechanisms by which cancer cells acquire energy for metabolic needs is a therapeutic target. Discover the latest research on cancer metabolism and therapeutic targets.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Metabolism

In order for cancer cells to maintain rapid, uncontrolled cell proliferation, they must acquire a source of energy. Cancer cells acquire metabolic energy from their surrounding environment and utilize the host cell nutrients to do so. Here is the latest research on cancer metabolism.