Jan 15, 2020

Canonical Wnt-signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons

bioRxiv
Jana HepptDieter Chichung Lie

Abstract

In adult hippocampal neurogenesis neural stem/progenitor cells generate new dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult-born neurons. Here, we investigated the role of canonical Wnt/beta-catenin-signaling in dendritogenesis of adult-born neurons. We show that canonical Wnt-signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in early immature neurons, and re-activation during maturation, and demonstrate that the biphasic activity pattern is required for proper dendrite development. Increasing beta-catenin-signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually resulted in dendritic defects and excessive spine numbers. In middle-aged mice, in which protracted dendrite and spine development was paralleled by lower canonical Wnt-signaling activity, enhancement of beta-catenin-signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of beta-catenin-signaling is essential for the correct functional integration of adu...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

MRNA Maturation
Laboratory mice
Beta catenin
Aging
Stem Cells
Wnt Signaling Pathway
Morphological
Modulated
Vertebral Column
Neuronal RNA Granule

Related Feeds

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Cell Aging (Preprints)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.